
Introduction to Linux dynamic
device management

Birmingham Linux User Group
21 April 2011

Nick Morrott

Plan

● Device basics

● Intro to udev

● Writing udev rules

Device basics

Part 1

Linux device basics

● All devices are files (device nodes) e.g.
/dev/sda1

● Abstraction allows device drivers/users to
communicate with the 'real' devices as
ordinary files

● Different types of device node (block,
character, pseudo)

Device permissions

● Device nodes have permissions and
ownership

● Just the same as 'regular' files

brw-rw---- 1 root disk 8, 1 Dec 11 12:00 /dev/sda1

Major/minor numbers

● Device nodes have major/minor numbers
which identify the device driver (major) and
specific device (minor) being controlled

● These are not present for 'regular' files

brw-rw---- 1 root disk 8, 1 Dec 11 12:00 /dev/sda1

Block devices (e.g. hard disk,
optical media)

● Store and transmit data in structured
sequences of bytes called blocks

● Use buffered I/O to boost performance, often
support random access

● brw-rw---- 1 root disk 8, 1 Dec 11 12:00 /dev/sda1

(major=8 is a block SCSI/SATA device, minor=1 is first
partition on device)

Character devices (e.g.
keyboards, terminals)

● Transmit data single character at a time

● I/O usually unbuffered, no support for
random access seeking

● crw------- 1 root root 4, 1 Dec 11 12:00 /dev/tty1

(major=4 is a char TTY device, minor=1 is the first
virtual terminal)

“Pseudo” devices

● Not all device nodes on the system must
correspond to physical devices:

/dev/null
 - discards all input, produces no output

/dev/zero
 - produces stream of NUL bytes

/dev/urandom
 - produces stream of (pseudo)random
 numbers

Part 2

Introduction to udev

The good bad old days

Before Linux 2.5, device management was
taken care of using devfs

devfs: the device filesystem

● Static list of devices created in /dev at
installation time

● Nodes created for all possible devices (even
if device was never installed)

● Implemented completely in the kernel

● No device-specific naming

Failings of devfs

● Static /dev was large and unwieldy

● Growing shortage of major/minor device
numbers

● Real need for persistent device-specific
naming

● Need for userspace notification when
devices created/removed

(from “udev and devfs – The Final Word”)

What happened?

devfs (and later hotplug and HAL) was
deprecated and replaced in Linux 2.5 by the
much more flexible udev

udev features

● Dynamic device nodes - only nodes for
installed devices are created

● Implemented in userspace, allowing for:
 - notification of plug/unplug events
 - user to control device naming
 - querying of /sys to identify devices

● Support for persistent device naming -
across reboots; with multiple similar devices;
and with different hotplug ordering

sysfs: the system filesystem

● Virtual filesystem (/sys) present in Linux 2.6+

● Managed by kernel, browsable by user, can
be queried with userspace tools

● Exports device information for installed
hardware to userspace

● The device information is the magical
ingredient that allows udev to create device
nodes via rules

What tools does udev provide?

● udevd – user space daemon

● libudev – library providing access to device
information

● udevadm – udev management/dianostics tool

● udev rules – match against the uevent and sysfs
database to control device creation/naming

udevd

● Starts up in the background at boot and
waits for uevents

● When a uevent is received it compares the
information against udev's current set of
rules for any matches

● As a bonus, new rules files are discovered
automatically

udevadm

● Userspace tool to manage/query/test udev

● Replaces udevinfo (to which older tutorials
may still refer)

● 'udevadm --info' is used to query udev
database for a given device

● 'udevadm --test' is used to test a udev event
run for a given device

udevadm info example (1)
Intel SSD

$ /sbin/udevadm info --query=property –name=/dev/sda

UDEV_LOG=3
DEVPATH=/devices/pci0000:00/0000:00:08.0/host2/target2:0:0/2:0:0:0/block/sd
a
MAJOR=8
MINOR=0
DEVNAME=/dev/sda
DEVTYPE=disk
SUBSYSTEM=block
ID_ATA=1
ID_TYPE=disk
ID_BUS=ata
ID_MODEL=INTEL_SSDSA2M040G2GC
ID_MODEL_ENC=INTEL\x20SSDSA2M040G2GC\x20\x20\x20\x20\x20\x20\x20
\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20
ID_REVISION=2CV102DH

udevadm info example (2)
Logitech USB Headset

$ /sbin/udevadm info --query=property --name=/dev/snd/by-id/usb-
Logitech_Logitech_USB_Headset-00

UDEV_LOG=3
DEVPATH=/devices/pci0000:00/0000:00:02.0/usb2/2-7/2-
7:1.0/sound/card3/controlC3
MAJOR=116
MINOR=21
DEVNAME=/dev/snd/controlC3
SUBSYSTEM=sound
ID_VENDOR=Logitech
ID_VENDOR_ENC=Logitech
ID_VENDOR_ID=046d
ID_MODEL=Logitech_USB_Headset
ID_MODEL_ENC=Logitech\x20USB\x20Headset
ID_MODEL_ID=0a02
ID_REVISION=1013
ID_SERIAL=Logitech_Logitech_USB_Headset
ID_TYPE=audio

That's all well and good, but

How does $FILE_MANAGER open a new file
browser when you plug in your memory
stick?

udev, HAL, D-Bus

● Kernel recognises new hardware, loads
relevant modules and triggers uevent

● udev/sysfs responsible for creating the
device node(s)

● udev messages the device info on D-Bus

● A D-Bus-registered $FILE_MANAGER
receives the information, and opens up a
new file browser

From hardware to browser

(Adapted from Linux Magazine #71, 10/2006)

Current status

As always, Linux libraries and tools are in a
state of flux

● HAL was deprecated in merged into udev

● DeviceKit (HAL's modular replacement) was
itself deprecated and also rolled into udev,
UPower and udisks

● Newer kernels (2.6.32+) can use devtmpfs
with/without udev

Part 3

Writing udev rules

udev rules (1)

● determine how devices get created (name,
permissions, ownership)

● udev comes with a set of default rules (in
/lib/udev/rules.d/), but you can write your
own (stick them in /etc/udev/rules.d/10-
local.rules)

● Rules files must have the extension .rules
and are parsed in lexical order

● Rules must be on a single line

udev rules (2)

● >1 rule can match a particular device

● all matches will be processed unless a rule
states no further processing should take
place (OPTIONS+="last_rule")

● udev creates one 'real' node for a particular
device, but multiple symlinks can be created
for more flexibility

● Rules can match against a multitude of
exported device information

udev rules (3)

● rules use key-value pairs to match a
particular device (based on uevent and sysfs
information)

● Multiple key-value pairs allow for more
granular device control

● Keys (match or assignment) are used to
select a particular property

● Values are used to specify a property's value

● Operators (==, +=, =) link keys to values

Simple udev rule example (1)

Scenario

We have a SATA drive (sdb) backups that
we want configured with a persistent name to
use with backup scripts

Solution

Match the device named 'sdb' by the kernel,
and create a device node '/dev/backup_disk'

KERNEL=="sdb", NAME="backup_disk"

Simple udev rule example (1)

Scenario

We have a SATA drive (sdb) backups that
we want configured with a persistent name to
use with backup scripts

Solution

Match the device named 'sdb' by the kernel,
and create a device node '/dev/backup_disk'

KERNEL=="sdb", NAME="backup_disk"

Simple udev rule example (1)

Scenario

We have a SATA drive (sdb) backups that
we want configured with a persistent name to
use with backup scripts

Solution

Match the device named 'sdb' by the kernel,
and create a device node '/dev/backup_disk'

KERNEL=="sdb", NAME="backup_disk"

Simple udev rule example (2)

Scenario

Instead of naming the 'real' device node
/dev/backup_disk, we want the device
named /dev/sdb (regular kernel name) but
additionally create a symlink to the device
called /dev/backup_disk

Solution

KERNEL=="sdb", SYMLINK+="backup_disk"

Simple udev rule example (2)

Scenario

Instead of naming the 'real' device node
/dev/backup_disk, we want the device
named /dev/sdb (regular kernel name) but
additionally create a symlink to the device
called /dev/backup_disk

Solution

KERNEL=="sdb", SYMLINK+="backup_disk"

Simple udev rule example (2)

Scenario

Instead of naming the 'real' device node
/dev/backup_disk, we want the device
named /dev/sdb (regular kernel name) but
additionally create a symlink to the device
called /dev/backup_disk

Solution

KERNEL=="sdb", SYMLINK+="backup_disk"

Using sysfs attributes

● We can use `udevadm info` to list all
exported attributes for a given device

● We are not limited to using only sysfs
attributes: we can mix kernel, driver,
subsystem and sysfs match keys as required

● So, back to the udevadm output for the
Logitech USB headset for a moment...

sysfs udev rule example (1)
Logitech USB Headset

$ /sbin/udevadm info --query=property --name=/dev/snd/by-id/usb-
Logitech_Logitech_USB_Headset-00

UDEV_LOG=3
DEVPATH=/devices/pci0000:00/0000:00:02.0/usb2/2-7/2-
7:1.0/sound/card3/controlC3
MAJOR=116
MINOR=21
DEVNAME=/dev/snd/controlC3
SUBSYSTEM=sound
ID_VENDOR=Logitech
ID_VENDOR_ENC=Logitech
ID_VENDOR_ID=046d
ID_MODEL=Logitech_USB_Headset
ID_MODEL_ENC=Logitech\x20USB\x20Headset
ID_MODEL_ID=0a02
ID_REVISION=1013
ID_SERIAL=Logitech_Logitech_USB_Headset
ID_TYPE=audio

sysfs udev rule example (1)
Logitech USB Headset

Scenario

We want to match the headset (the only one
we have) when it is connected/disconnected

Solution

Looking at the exposed sysfs attributes, it
would appear that using the 'ID_MODEL'
attribute should be unique enough for us

(We could also use the 'SUBSYSTEM'
attribute to further restrict the match)

sysfs udev rule example (1)
Logitech USB Headset

$ /sbin/udevadm info --query=property --name=/dev/snd/by-id/usb-
Logitech_Logitech_USB_Headset-00

UDEV_LOG=3
DEVPATH=/devices/pci0000:00/0000:00:02.0/usb2/2-7/2-
7:1.0/sound/card3/controlC3
MAJOR=116
MINOR=21
DEVNAME=/dev/snd/controlC3
SUBSYSTEM=sound
ID_VENDOR=Logitech
ID_VENDOR_ENC=Logitech
ID_VENDOR_ID=046d
ID_MODEL=Logitech_USB_Headset
ID_MODEL_ENC=Logitech\x20USB\x20Headset
ID_MODEL_ID=0a02
ID_REVISION=1013
ID_SERIAL=Logitech_Logitech_USB_Headset
ID_TYPE=audio

sysfs udev rule example (2)
Logitech USB Headset

● Let's construct the match component of the
rule using these two attributes:

SUBSYSTEM==”sound”, ATTR{ID_MODEL}==”Logitech_USB_Headset”

● Now that we can identify the headset,
instead of changing the name of the device
node created when it is plugged in, let's
make the rule call an external script to set it
as the default ALSA device

sysfs udev rule example (2)
Logitech USB Headset

● Let's construct the match component of the
rule using these two attributes:

SUBSYSTEM==”sound”, ATTR{ID_MODEL}==”Logitech_USB_Headset”

● Now that we can identify the headset,
instead of changing the name of the device
node created when it is plugged in, let's
make up the rule that might call an external
script to set it as the default ALSA device

sysfs udev rule example (3)
Logitech USB Headset

● If we want to run a script/program to give us
a device name to use in a rule, we use the
PROGRAM assignment key

● If we just want to run an external script or
program when a rule is triggered, we use the
RUN assignment key

● We can further improve the rule by using the
ACTION match key to determine whether the
device is being connected or disconnected
from the system

sysfs udev rule example (4)
Logitech USB Headset

● Here's a set of rules that might meet our
requirements:

first match rule uses ID_MODEL
ENV{ID_MODEL}=="Logitech_USB_Headset", GOTO="logitech_start"

shortcut if we haven't matched the headset
GOTO="logitech_end"

we've matched, so we run these rules
LABEL="logitech_start"
ACTION=="add", RUN+="/usr/local/bin/headset-connect.sh"
ACTION=="remove", RUN+="/usr/local/bin/headset-disconnect.sh"

LABEL="logitech_end"

(adapted from http://ubuntuforums.org/showthread.php?t=559014)

http://ubuntuforums.org/showthread.php?t=559014

Testing before deployment

● It would be great if we could test the effect of
rules before we deploy them – we can!

● Increase debug verbosity:

udevadm control --log-priority="debug-verbose"

● and check the effect of the current rules:

udevadm test devpath

(where devpath is an absolute sysfs path
rooted on /sys)

(Finally) udev rules for MythTV
(1)

Scenario

We have several devices (DVB/video/LIRC)
in a system but their device nodes
(/dev/videon and /dev/dvb/adaptern) move
around on boot - we want persistent device
nodes on every boot

Solution

udev rules!

udev rules for MythTV (2)

● We have DVB-T (Freeview) and DVB-S
(Freesat) cards in this example:

● We want to always refer to the DVB-S card
as /dev/dvb/adapter101/

Create a symlink /dev/dvb/adapter101 pointing to Nova S Plus
with bus ID 0000:03:04.2
SUBSYSTEM=="dvb", ATTRS{vendor}=="0x14f1", \
KERNELS=="0000:03:04.2", \
PROGRAM="/bin/sh -c 'K=%k; K=$${K#dvb}; printf dvb/adapter101/%
%s $${K#*.}'", \
SYMLINK+="%c"

udev rules for MythTV (3)

● We have DVB-T and DVB-S cards in this
example:

● We want to always refer to the DVB-T card
as /dev/dvb/adapter102/

Create a symlink /dev/dvb/adapter102 pointing to K-World 210
with bus ID 0000:03:05.0
SUBSYSTEM=="dvb", ATTRS{vendor}=="0x1131", \
KERNELS=="0000:03:05.0", \
PROGRAM="/bin/sh -c 'K=%k; K=$${K#dvb}; printf dvb/adapter102/%
%s $${K#*.}'", \
SYMLINK+="%c"

udev rules for MythTV (4)

Scenario

Our IR remote is correctly detected but
changes node number on reboot which
breaks LIRC

Solution

Create a persistent node for LIRC to use
Create a symlink /dev/input/irremote pointing to the IR port
on the Nova S Plus
KERNEL=="event[0-9]", \
ATTRS{name}=="cx88 IR (Hauppauge Nova-S-Plus*", \
SYMLINK+="input/irremote"

Useful reading/links

● udev homepage
(http://www.kernel.org/pub/linux/utils/kernel/hotplug/udev.html)

● udev and devfs – The Final Word
(http://www.kernel.org/pub/linux/utils/kernel/hotplug/udev_vs_devfs)

● Making Hardware Just Work
(http://www.ometer.com/hardware.html)

● Linux Allocated Device List
(http://www.kernel.org/pub/linux/docs/device-list/devices.txt)

● Writing udev rules
(http://www.reactivated.net/writing_udev_rules.html)

http://www.kernel.org/pub/linux/utils/kernel/hotplug/udev.html
http://www.kernel.org/pub/linux/utils/kernel/hotplug/udev_vs_devfs
http://www.kernel.org/pub/linux/docs/device-list/devices.txt
http://www.reactivated.net/writing_udev_rules.html

Thanks for listening!

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

